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ABSTRACT

For T a maximal monotone operator on a Hilbert space H

and A a closed subspace of H, the "partial inverse" TA of

T with respect to A was introduced. TA is maximal monotone.

The proximal point algorithm, as it applies to T was shown to

result in a simple procedure, the "method of partial inverses", for

solving problems in which the object is to find x e A and y cA

such that y e T(x). This method was shown to specialize to give new

algorithms for solving several optimization and equilibrium problems.

An algorithm was described for finding a feasible point for a

system of linear inequalities. If the solution set has nonempty

interior, termination was shown to occur after a finite number of

iterations. The algorithm is a projection type method, .similar to

~. b

the relaxation methods of Agmon, Motzkin, and Schoenberg. It differs

from previous methods in that it solves for a certain "dual" solution

in addition to a primal solution. It is a special case of the

method of partial inverses.

The feasible point algorithm was shown, for inconsistent

systems, to generate a sequence converging at a linear rate to the set

of least square solutions.

A primal-dual decomposition method was investigated to solve the

separable convex programming problem. Convergence to a solution and

Lagrange multiplier vector from an arbitrary starting point was . 4

demonstrated. T T method was shown to be equivalent to the method of
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niI

w a-'.*.**~** .. :



partial inverses. In the nonseparable case, it was shown to specialize

to a known method, the proximal method of multipliers. Conditions were

provided which guarantee linear convergence of the algorithm. I

For families of nonlinear programming problems, new conditions were

established which guarantee uniqueness of the global optimizer to be

a generic property.
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RESEARCH SUMMARY

Many optimization problems are equivalent to a problem of finding

a zero of a maximal monotone operator T on a Hilbert space H:

(1) to find x £ H such that 0 e T(x).

- The known "proximal point algorithm" for solving (1) takes an

- arbitrary starting point x0 e H and a sequence (c ) of positive

real numbers and determines a sequence (xn ) by repeatedly applyingn

the pruximal mapping:

(2) = (I+c T)- (xn)' xn+l •

A vast array of problems can be regarded as special instances

of (1). Examples are convex or linear programming, monotone

* complementarity problems, network flow problems, variational

inequalities, and systems of linear equations or inequalities.

Nevertheless, the known uses of the proximal iteration are few. By far,

the most important application is found in the method of multipliers of

Hestenes and Powell. This algorithm for solving convex programming

problems was known for some time before Rockafellar showed it to be a

special instance of the proximal point algorithm. Outside of

this, there are few serious uses. Although it is theoretically

possible to execute, as a practical matter the iteration (2)

can be performed only in a few cases.

There are many problems which can be expressed in the form (1),

4
.
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are not easily solved by the proximal point algorithm, but have the

interesting property that T can be "decomposed" into simpler monotone

multifunctions that are easy to proximate. (To "proximate" means to

execute the rule (2), i.e., to evaluate the proximal mapping). Our

research in [1] has shown that new algorithms can be developed which

exploit such decomposition.

*"-" The principal new idea that enabled us to extend the

powers of the proximal point algorithm and derive such

decomposition methods is our notion of the "partial inverse"

of a monotone mapping. If A is a closed subspace of H

and B=A , then each x e H can be written uniquely as
x = XA+XB with xA c A and xB e B. If T is

a multifunction, the partial inverse of T with respect to A

is the multifunction TA : H * H defined by v E TA(U) iff there

exists x and y in H with y £ T(x), u = xA+YB and

v XB+-"Y, TA  is (maximal) monotone iff T is (maximal) monotone.

We showed that TA could be used as a vehicle for introducing

introducing duality into and solving many problems. Often, a problem

can be expressed in the following form (for suitable choices of T

O and A):

(3) to find x c A such that there exists y e A

a with 0 e T (x+y)

where y is a "dual variable" and T is maximal monotone. If

z could be found such that 0 e TA(z) then x=zA would solve

.........................................--
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(3). In [1] we introduced the idea of solving (3) by finding

such z via the proximal point algorithm. Theoretically, this

can definitely be done; the fact that it is also practical was

demonstrated in [1]. There it was shown that this leads to the

following iterative procedure, the "method of partial inverses" to

solve (3):

ALGORITHM 1 ("method of partial inverses" []).

Initialize: Choose arbitrary x0 e A and y0 e B.

Iteration k (k=O,l,...):

Proximal step: Find x , yk e H such that

xk+Yk=X y and 1 (ye)+(y )B C T((X')A+ _i (X )B) -

ck Ck

Projection step: Let Xk+ 1 = (x)A and Yk+1 = (Yk)B"

In [2], we applied the partial inverse approach to the problem of

solving a system of linear inequalities:

(4) to find x e Rd  such that <x,ui> < bi, i=l,...,n

(where 0 ui c Rd and bi e R). Let Ci = [x : <x,ui> < bi} and

C = n ... Cn .  It is a straightforward matter to apply Algorithm 1

to solve (4). Our principal accomplishment in [2] was to establish

that that algorithm actually terminates after a finite number of

iterations, provided the solution set has nonempty interior.

The algorithm so obtained is a new addition to the family of known

*o o,*, . % " -. , *. "o '. " .. . .. .. . -. ", ". .'. . "o *, % .'° .. '. . "... .-.. . . . . . . . . . . . . . . . . . . .o % - ", % %
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"projection" methods. These solve (4) by computing a sequence

of projections onto the halfspaces C. := f x : <x,u i> < b. I

The best knovn of these are the "relaxation" methods of Agmon

and Motzkin and Schoenberg. According to the simplest of these, a

sequence (xk) is generated by taking Xk+ I to be the

projection of xk onto the furthest halfspace C1 . Another

possibility is to project in turn in some fixed cyclical order

onto the sets C-. In another variation studied by Motzkin and

Schoenberg, one takes xk+ 1 to be the reflection of xk

across the furthest hyperplane. This last method has the surprising

property that a solution is always found in a finite number of steps

if the solution set has nonempty interior. In a more recent study by

Goffin, classes of problems (4) were identified for which finite

termination in the relaxation method occurs without reflection.

However, the reflection method is the only one of these known methods

for which finite termination always occurs under the sole assumption

- . that the feasible set has nonempty interior, so our result proving

finite convergence of the algorithm is quite surprising.

.' The algorithm we have proposed to solve (4) is:

.- .. .-.. . . .. .... -.. .- ... . . ' . . ' . .. -.-..-. .. . ... **. * . *.. . -.. . - . i -
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ALGORITHM 2.

-~Start :Choose arbitrary x 0 ' Y01 ' .. , CR

with Yo+ 'Yn= 0.

Step k (k=0,l,....: Compute

YL~ = xk+yki-xi ,

and update

~k+l1 = lly- ~ ,.,nn

From results we proved in [1] it follows that regardless of the choice

of starting values x, .. yn

either x k -0 x and Yki yi with x eC,

yinormal to Ci at x, and yl +...+ Yn =0,

or J * and (4) is inconsistent.

Our main result from (2] regarding Algorithm 2 states that

* termination occurs after a finite number of iterations if the

interior of C is nonempty. More precisely, int(C) 11 0 implies

for some k that

Xk = k+1

0  kl k+l,l1

0 = kn Y k+l,n *

% AP



with x- C C.

In [3], we investigated the behavior of Algorithm 2 in

the cases where int(C) = 0 or where C = 0. If int(C) = 0 but

C X 0, we showed that the sequence (xk) converges to a solution and

that the distance to the solution set approaches zero at a linear rate.

Even in the case where C = 0, we got convergence at a linear rate to

• the set of least-square solutions of (4), and (xk) converges to one

* particular least-square solution. More precisely, we hav- )roven in (3]

the following (X denotes the set of least square soluti )

THEOREM. Let sequences (xk), (Yki)' (X ' (y produced

by the Algorithm 2. The sequences (xk) and (x~i) (i=l,...,n)

converge to limits

• . i . xK -9' ~ l nkxW

* where

i. x and x'. c C
n1

. -. = nr]c

- < and the vector (x'l-x0 ,..., XnX ).. ) equals the vector of

smallest norm in the set

W [w,...,W- i Jwi) WlE Cl,...,WnE Cn}.

.

I'. -~ 00FC' .6
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This vector also equals the element v of smallest norm in range(TA).!A

For the sequences (Yki)' (yk)' one has

.lim (Ykl'""'Ykn)/k lim (ykl' "''yn )/k -v.

In [41, we applied the partial inverse approach to obtain a

new decomposition algorithm for the solution of separable convex

programming problems.

The convex programming problem is

(5) to minimize f 0(x) subject to x e C and

f.(x) < 0, i = 1 ... ,M.

We assume the functions f. (i=0,...,m) to be finite-valued
1. d Rd

convex: R d R, and C R R to be closed convex. In the separable

* case of (5),

..

".(6) there are functions :i " * R (O<i<m, l<j<n)

(d = d1+...+dn) such that for each i,

nd.
fi(x) = jl (X ) (x = (xu ' ... ,xn) xj R j )

d
*and there are closed convex sets C. C R

such that C C CX... .XC~ Rd

1 n.

Our method is closely related to a family of "dual" methods for

the solution of (5). The prototype for such methods, the classical

. dual approach, involves the Lagrangian function

%~ % °°.



L(x,y) = fo(x) + T Yifi(x) (xEC, yO)

and the concave dual objective function

g(y)= inf L(x,y) (y O).
xeC

The dual problem to (5) is

(7) to maximize g(y) subject to yO.

Under mild assumptions, the infimum in (5) equals the supremum in

(7) and a solution y > 0 to (7) exists. Assuming the existence of

such y, it is known that x solves (5) if, and only if, (x,y)

*. is a saddle-point for L.

*- In a typical dual approach, one minimizes L(. ,y) over C for

a sequence of values Yk > 0, obtaining a sequence xk which

. hopefully converges to an optimum while Yk converges to a dual

"'p optimum. Several versions of this strategy have been suggested in

the literature.

One very valuable characteristic of the classical approach is that

it leads to decomposition algorithms. For the separable problem (6),

L(x,y) = f0(x) + Ii yifi(x)

= ( f 0 j(x ) + i yifi j(x.)) -

Thus the minimization in x of L(x,y) over C decomposes into the n

separate minimizations of Lj(xjyy) = f0j(xj) + Zi Yifi(xj) over Cj.

'p~) fix )+I ifi x ) oe i
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This 'Lagrangian decomposition" has been exploited by numerous

4. authors. By replacing a d-dimensional constrained problem with a

sequence of less constrained -oblems of lower dimensions dl ,.. oldn ,

it offers a great advantage. Some authors have investigated ways of

L' applying this technique in situations where separability is absent,

manufacturing separability by the device of replacing functions

with their linear approximations (linear functions are always

separable).

However, the classical approach has several potential drawbacks.

4;.. First, for some y > 0, L(x,y) may fail to achieve its minimum on C.

Worse, g(y) may have the value - . Such values of y must be ruled

out, so the dual problem, in addition to the nice constraint y > 0, has

the possibly nasty constraint g(y) > -=. It is possible to generate a

sequence xk failing to be a minimizing sequence for (5) even with Yk

being a maximizing sequence for the dual. All of these inconveniences

can be ruled out by imposing appropriate assumptions. The most

serious problem is that one is severely restricted in the choice

of a method to maximize g. Each evaluation of the function g(y)

" requires that the function L(x,y) be minimized in x over C. Thus

any method requiring many evaluations of the function g is

* impractical. Fortunately, the minimization in x of L( ,y) yields, at

no extra cost, a subgradient for g at y, a fact which motivates

Uzawa' s method, a steepest ascent approach to the maximization of

g. The Dantzig-Wolfe algorithm can be viewed as the approach

.' whereby g is maximized via a cutting plane method.

One attractive strategy for avoiding some of the pitfalls

t.
-a.
47 - % .. " ' ' ' ' " . . " " - - - - " " " '" ' " " . . " -%
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of the classical dual approach is offered by Rockafellar's proximal

method of multipliers, a modification of the multiplier method of

Hestenes and Powell. At each step, one has x and y at hand

and minimizes the "augmented Lagrangian"

(8) P(x) = f0 (x) + Ix-I 2 + Jimax2 0, fi(x)+Yil
" 2

over the set C to obtain the next x. The strong convexity of Q(x)

guarantees the existence of a unique minimum and the next multiplier

y is chosen according to a simple update rule. Global convergence is

guaranteed under remarkably weak assumptions: fi finite convex,

C closed convex, and existence of a solution-multiplier pair.

Unfortunatley, the penalty function (8) cannot be written as

a sum of n functions pj(xj), so the augmented Lagrangian approach

does not directly yield a decomposition algorithm. This is the

principal disadvantage of the augmented Lagrangian approach used for

decomposition purposes. Several strategies for dealing with this problem

have been discussed in the literature. One way around this difficulty

" is to either replace p(x) by a linear approximation or rely on a

method that minimizes p(x) that uses linear approximations, such as

0 Frank-Wolfe.

In the nonseparable case (n=l), our method specializes to the

proximal method of multipliers. In the separable case, (8) is

replaced by a function of the form [jp, where each pj is a function

only of xj and looking very much like (8). The user is free

.. .%. . . . . ... .......- ............ . ., %%*.% .
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" to minimize the strongly convex function p_ over the set C. (thisJ J

is the only constraint in the subproblem minimization) by any method

desired. The advantages of the proximal method of multipliers are

retained. One still has existence and uniqueness of a minimum in

each subproblem minimization, and global convergence to a solution

and multiplier under the same minimal assumptions, even when the

minimization is performed only approximately according to the

stopping criterion we provide. The update rule for the multipliers

is just as simple as in the proximal multiplier method.

There are two basic approaches to the solution of the separable

problem in a hierarchical or multi-level fashion. These are

resource-directive and price-directive methods. In the resource

directive approach, one iteratively determines values u ij such

that the solutions of the problems

(9) min f.(x.) subject to x. E C. and fij(xj) < uij

(j=l,...,n) solve (5). In the price-directive approach, one

iteratively determines "prices" yl,...,ym such that the optimal

solutions of the problems

(0) min f0j(x) + lYifij(xj) subject to x.eC

(j=1,...,n), also solves (5).

Our method differs from existing methods in that it iteratively

* minimizes a function depending both on prices yl....'ym and

resources u... The prices converge to values such that the

solutions to (9) are solutions to (5) and the allocations

~MLak

ra.
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converge to values such that the solutions to (10) solve (5). The

method is in this sense both price- and resource-directive.

d.
Let n > 0 be an arbitrary constant. If we define pj: R * R by

.4.

fj(qt) Tlqit-xjl2 J;imax 2 0,fij(q )-uij+nyi} (if qt c Cj)

"" Oj(q )=

+W" (otherwise)

I 4.

the decomposition algorithm we have introduced is

ALGORITHM 3.

Initialize: Start with arbitrary x=(xl,...,x n ) R, y £ Rm ,

and u e Rmn such that 1juij = 0, i=l,...,M.J.,m.

Iteration k (k=O,l,...):

Minimization step: For j=l,...,n, find the unique qt to

minimize pj(q) (subject to the implicit constraint qt c Cj).

Update: Let u!. = max~u. -ny.,fij (q )} and then
ii ij iifi

+ - + + v. + I u'
.x q , ij - n k k = nn

Our principal result regarding convergence of this algorithm is:
0

,5.4;
4-""''." " " '" " . .'''"""""""""",.''.'"-""• '-"."" ' , " %, 4 - - . .. - -w-,Z" - 4 ",Z'-t . .
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THEOREM. Let Algorithm 3 be applied to the convex programming

problem (5). The algorithm is equivalent to the proximal point

algorithm in the sense that (x ,u + y +) = (I+(naF) A)F (x,u+y), and

F is a certain lower semicontinuous convex function. Suppose the

1. minimization step is performed accurately enough so that

in step k: for each j, dist(0,3pj(q)) < - (IEk < )

holds. If the generated sequence of iterates (x,u+y) is

unbounded, there exists no solution-multiplier pair. If the sequence

is unbounded and the Slater condition is satisfied, then the

convex programming problem (5) has no solution. If the sequence

is bounded, then x, y. and u converge, respectively, to a

solution, Lagrange multiplier, and optimal allocation for the convex

": programming problem. Convergence occurs at a linear rate provided

the strong second-order optimality conditions are satisfied for the

problem (5).

In [5], we discussed the parameterized family

(Q )to minimize f (x,p) subject to x £ C and
p0

f (x,p) < 0 for i £ I = fl,...,s}

* = 0 for i e J = [s+l, m}

By a "generic" property of the family (Q ) is meant a property
p

which holds for all problems (Q ) except possibly for values of p
* p

in a subset of Lebesgue measure zero.

Rockafellar and Fujiwara have (independently) given examples of

.4.

-L- 0....- .-7.z
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constrained families (Qp) having the property that for almost all
p

p, (Q p) either has a unique global minimum, or no global minimum

at all. Using the transversality theorem, we showed that their

results can be extended to more general classes of parameterizations.

- Fujiwara considered the family

(Qu v) to minimize f(x)-x-u subject to g(x)=b+v

(f : Rn -* R, g : Rn * R ) and showed, assuming sufficient

differentiability of the functions f and g, that for all v,

(Qu v) has at most one global solution for almost all u. This

implies, by Fubini's theorem, that for almost all (u,v), (Qu) hasu'v

at most one globally optimal solution. He proved a similar result

for problems where the equality constraint is replaced with an

inequality. Fujiwara obtained his result by applying a theorem of

Araujo and Mas-Colell.

Rockafellar obtained a similar result for the more general family

( to minimize f0 (v,x)+w.x over all x satisfying

fi(v,x)+ui < 0 for i=l,...,s

= 0 for i=s+l,...,m.

* Only the linear perturbation w of the objective function has a

real role in his proof of global uniqueness; like Fujiwara, he holds.

the other parameters fixed, shows the result to hold for almost

* all w and then invokes Fubini's Theorem to show that the result

holds for almost all values of the parameters combined. The

principal tool he uses to obtain almost sure uniqueness is the

4 q . * . .. . . . . .
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fact that a convex function is differentiable except on possibly

a set of measure zero (although convexity of the functions fi is

not assumed). The Mas-Colell theorem employed by Fujiwara is proved

by quite direct and elementary means. In a more recent paper,

Fujiwara has established a generic global uniqueness property for

* " constrained problems under a compactness assumption on the constraint

S•. set. This result, however, deals with "generic" properties which hold

"W nfor all functions fi in an open dense set with respect to the strong

Whitney C2 _oogy

Our result on the generic global uniqueness property can be

regarded as a generalization of the Mas-Colell theorem to

constrained problems. Our use of the transversality theorem

simplifies the proof considerably, though at the expense of

slightly stronger differentiability assumptions. We considered

families of the form

(Qp,q) to minimize f0 (x,p,q) subject to

f.(x,q) < 0, i=l,...,s,

= 0, i-s+l,...,m,

where the assumptions on f. are as before and the parameters vary

over some open set in Euclidean space. The criterion we used

to establish generic global uniqueness was:

(11) for all xlj x2, and all q, the function
12 2

.p * f0(x,p,q) - f0 (x2 ,p,q) is of rank one at all p
.4,

.-4.
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0"

The Rockafellar and Fujiwara families considered above are easily

seen to satisfy criterion (11).

THEOREM. Let the family (Qp,q) satisfy the criteria (11) and,p5
the function q * (fl(x,q),...,fm(x,q)) is

of full rank m for all x at every q.

Then for almost all (p,q), (Qp,q) has at most one global optimizer.

In fact, for almost all (p,q), f0 ( ,p,q) cannot achieve the same

value at any two distinct critical points (points satisfying the

first-order optimality conditions along with some y).

N

.1 P P
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